Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Environ Res ; 252(Pt 2): 118899, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604486

RESUMO

The integration of electrokinetic and bioremediation (EK-BIO) represents an innovative approach for addressing trichloroethylene (TCE) contamination in low-permeability soil. However, there remains a knowledge gap in the impact of the inoculation approach on TCE dechlorination and the microbial response with the presence of co-existing substances. In this study, four 1-dimensional columns were constructed with different inoculation treatments. Monitoring the operation conditions revealed that a stabilization period (∼40 days) was required to reduce voltage fluctuation. The group with inoculation into the soil middle (Group B) exhibited the highest TCE dechlorination efficiency, achieving a TCE removal rate of 84%, which was 1.1-3.2 fold higher compared to the others. Among degraded products in Group B, 39% was ethylene. The physicochemical properties of the post-soil at different regions illustrated that dechlorination coincided with the Fe(III) and SO42- reduction, meaning that the EK-BIO system promoted the formation of a reducing environment. Microbial community analysis demonstrated that Dehalococcoides was only detected in the treatment of injection at soil middle or near the cathode, with abundance enriched by 2.1%-7.2%. The principal components analysis indicated that the inoculation approach significantly affected the evolution of functional bacteria. Quantitative polymerase chain reaction (qPCR) analysis demonstrated that Group B exhibited at least 2.8 and 4.2-fold higher copies of functional genes (tceA, vcrA) than those of other groups. In conclusion, this study contributes to the development of effective strategies for enhancing TCE biodechlorination in the EK-BIO system, which is particularly beneficial for the remediation of low-permeability soils.

2.
Water Res ; 253: 121328, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382292

RESUMO

Chromium and organochlorine solvents, particularly trichloroethene (TCE), are pervasive co-existing contaminants in subsurface aquifers due to their extensive industrial use and improper disposal practices. In this study, we investigated the microbial dechlorination kinetics under different TCE-Cr(Ⅲ/VI) composite pollution conditions and elucidated microbial response mechanisms based on community shift patterns and metagenomic analysis. Our results revealed that the reductive dechlorinating consortium had high resistance to Cr(III) but extreme sensitivity to Cr(VI) disturbance, resulting in a persistent inhibitory effect on subsequent dechlorination. Interestingly, the vinyl chloride-respiring organohalide-respiring bacteria (OHRB) was notably more susceptible to Cr(III/VI) exposure than the trichloroethene-respiring one, possibly due to inferior competition for growth substrates, such as electron donors. In terms of synergistic non-OHRB populations, Cr(III/VI) exposure had limited impacts on lactate fermentation but significantly interfered with H2-producing acetogenesis, leading to inhibited microbial dechlorination due to electron donor deficiencies. However, this inhibition can be effectively mitigated by the amendment of exogenous H2 supply. Furthermore, being the predominant OHRB, Dehalococcoides have inherent Cr(VI) resistance defects and collaborate with synergistic non-OHRB populations to achieve concurrent bio-detoxication of Cr(VI) and TCE. Our findings expand the understanding of the response patterns of different functional populations towards Cr(III/VI) stress, and provide valuable insights for the development of in situ bioremediation strategies for sites co-contaminated with chloroethene and chromium.

3.
Water Res ; 253: 121330, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387268

RESUMO

Although microorganisms carrying copper-containing membrane-bound monooxygenase (CuMMOs), such as particulate methane monooxygenase (pMMO) and ammonia monooxygenase (AMO), have been extensively documented for their capability to degrade organic micropollutants (OMPs), the underlying reactive mechanism remains elusive. In this study, we for the first time demonstrate biogenic reactive oxygen species (ROS) play important roles in the degradation of sulfamethoxazole (SMX), a representative OMP, within a methane-fed biofilm. Highly-efficient and consistent SMX biodegradation was achieved in a CH4-based membrane biofilm reactor (MBfR), manifesting a remarkable SMX removal rate of 1210.6 ± 39.0 µg·L-1·d-1. Enzyme inhibition and ROS clearance experiments confirmed the significant contribution of ROS, which were generated through the catalytic reaction of pMMO and AMO enzymes, in facilitating SMX degradation. Through a combination of density functional theory (DFT) calculations, electron paramagnetic resonance (EPR) analysis, and transformation product detection, we elucidated that the ROS primarily targeted the aniline group in the SMX molecule, inducing the formation of aromatic radicals and its progressive mineralization. In contrast, the isoxazole-ring was not susceptible to electrophilic ROS attacks, leading to accumulation of 3-amino-5-methylisoxazole (3A5MI). Furthermore, microbiological analysis suggested Methylosarcina (a methanotroph) and Candidatus Nitrosotenuis (an ammonia-oxidizing archaea) collaborated as the SMX degraders, who carried highly conserved and expressed CuMMOs (pMMO and AMO) for ROS generation, thereby triggering the oxidative degradation of SMX. This study deciphers SMX biodegradation through a fresh perspective of free radical chemistry, and concurrently providing a theoretical framework for the advancement of environmental biotechnologies aimed at OMP removal.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Espécies Reativas de Oxigênio , Oxirredução , Archaea/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/química
4.
J Hazard Mater ; 468: 133761, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364580

RESUMO

Co-contaminants and complex subsurface conditions pose great challenges to site remediation. This study demonstrates the potential of electrokinetic bioremediation (EK-BIO) in treating co-contaminants of chlorinated solvents and heavy metals in low-permeability soils with elevated sulfate. EK-BIO columns were filled with field soils, and were fed by the electrolyte containing 20 mg/L trichloroethylene (TCE), 250 µM Cr(VI), 25 µM As(III), 10 mM lactate, and 10 mM sulfate. A dechlorinating consortium containing Dehalococcoides (Dhc) was injected several times during a 199-d treatment at ∼1 V/cm. Sulfate reduction, Cr/As immobilization, and complete TCE biodechlorination were observed sequentially. EK-BIO facilitated the delivery of lactate, Cr(VI)/As(III), and sulfate to the soils, creating favorable reductive conditions for contaminant removal. Supplementary batch experiments and metagenomic/transcriptomic analysis suggested that sulfate promoted the reductive immobilization of Cr(VI) by generating sulfide species, which subsequently enhanced TCE biodechlorination by alleviating Cr(VI) toxicity. The dechlorinating community displayed a high As(III) tolerance. Metagenomic binning analysis revealed the dechlorinating activity of Dhc and the potential synergistic effects from other bacteria in mitigating heavy metal toxicity. This study justified the feasibility of EK-BIO for co-contaminant treatment and provided mechanistic insights into EK-BIO treatment.


Assuntos
Cromo , Tricloroetileno , Biodegradação Ambiental , Sulfatos , Solo , Óxidos de Enxofre , Ácido Láctico
5.
J Hazard Mater ; 466: 133683, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310847

RESUMO

The conventional perchlorate (ClO4-) reduction typically necessitates anaerobic conditions. However, in this study, we observed efficient ClO4- reduction using CH4 as the electron donor in a microaerobic environment. The maximum ClO4- removal flux of 2.18 g/m2·d was achieved in CH4-based biofilm. The kinetics of ClO4- reduction showed significant differences, with trace oxygen increasing the reduction rate of ClO4-, whereas oxygen levels exceeding 2 mg/L decelerated the ClO4- reduction. In the absence of exogenous oxygen, anaerobic methanotrophic (ANME) archaea contribute more than 80% electrons through the reverse methanogenesis pathway for ClO4- reduction. Simultaneously, microorganisms activate CH4 by utilizing oxygen generated from chlorite (ClO2-) disproportionation. In the presence of exogenous oxygen, methane oxidizers predominantly consume oxygen to drive the aerobic oxidation of methane. It is indicated that methane oxidizers and perchlorate reducing bacteria can form aggregates to resist external oxygen shocks and achieve efficient ClO4- reduction under microaerobic condition. These findings provide new insights into biological CH4 mitigation and ClO4- removal in hypoxic environment.


Assuntos
Metano , Percloratos , Metano/metabolismo , Percloratos/metabolismo , Archaea/metabolismo , Oxirredução , Anaerobiose , Oxigênio/metabolismo
6.
BMC Infect Dis ; 24(1): 138, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287246

RESUMO

BACKGROUND: Among people living with HIV (PLHIV) on antiretroviral therapy (ART), the mortality of immunological non-responders (INRs) is higher than that of immunological responders (IRs). However, factors associated with immunological non-response following ART are not well documented. METHODS: We obtained data for HIV patients from the National Free Antiretroviral Treatment Program database in China. Patients were grouped into IRs (CD4 cell count ≥ 350 cells/µl after 24 months' treatment), immunological incomplete responders (ICRs) (200-350 cells/µl) and INRs (< 200 cells/µl). Multivariable logistic regression was used to assess factors associated with immunological non-response. RESULTS: A total of 3900 PLHIV were included, among whom 2309 (59.2%) were IRs, 1206 (30.9%) ICRs and 385 (9.9%) INRs. In multivariable analysis, immunological non-response was associated with being male (2.07, 1.39-3.09), older age [40-49 years (vs. 18-29 years): 2.05, 1.29-3.25; 50-59 years: 4.04, 2.33-7.00; ≥ 60 years: 5.51, 2.84-10.67], HBV co-infection (1.63, 1.14-2.34), HCV co-infection (2.01, 1.01-4.02), lower CD4 + T cell count [50-200 cells/µl (vs. 200-350 cells/µl): 40.20, 16.83-96.01; < 50 cells/µl: 215.67, 85.62-543.26] and lower CD4/CD8 ratio (2.93, 1.98-4.34) at baseline. Compared with patients treated with non-nucleoside reverse transcriptase inhibitors (NNRTIs) based regimens, those receiving protease inhibitors (PIs) based regimens were less likely to be INRs (0.47, 0.26-0.82). CONCLUSIONS: We found a sizable immunological non-response rate among HIV-infected patients. Being male, older age, coinfection with HBV and HCV, lower CD4 + T cell count and lower CD4/CD8 ratio are risk factors of immunological non-response, whereas PIs-based regimens is a protective factor.


Assuntos
Antirretrovirais , Infecções por HIV , Feminino , Humanos , Masculino , Antirretrovirais/farmacologia , Contagem de Linfócito CD4 , Coinfecção/tratamento farmacológico , Coinfecção/complicações , Hepatite C/tratamento farmacológico , Hepatite C/complicações , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Estudos Retrospectivos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
7.
Rheumatology (Oxford) ; 63(3): 826-836, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326830

RESUMO

OBJECTIVE: Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS: Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS: We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION: CCCTC-binding factor is the specific transcription factor of ß-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Galactosídeos , Fatores de Transcrição , Animais , Camundongos , Humanos , Fator de Ligação a CCCTC , Anticorpos Antiproteína Citrulinada , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camundongos Knockout , Sialiltransferases/genética
8.
Biodegradation ; 35(1): 87-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37395851

RESUMO

Di-n-butyl phthalate (DBP) is widely used as plasticizer that has potential carcinogenic, teratogenic, and endocrine effects. In the present study, an efficient DBP-degrading bacterial strain 0426 was isolated and identified as a Glutamicibacter sp. strain 0426. It can utilize DBP as the sole source of carbon and energy and completely degraded 300 mg/L of DBP within 12 h. The optimal conditions (pH 6.9 and 31.7 °C) for DBP degradation were determined by response surface methodology and DBP degradation well fitted with the first-order kinetics. Bioaugmentation of contaminated soil with strain 0426 enhanced DBP (1 mg/g soil) degradation, indicating the application potential of strain 0426 for environment DBP removal. Strain 0426 harbors a distinctive DBP hydrolysis mechanism with two parallel benzoate metabolic pathways, which may account for the remarkable performance of DBP degradation. Sequences alignment has shown that an alpha/beta fold hydrolase (WP_083586847.1) contained a conserved catalytic triad and pentapeptide motif (GX1SX2G), of which function is similar to phthalic acid ester (PAEs) hydrolases and lipases that can efficiently catalyze hydrolysis of water-insoluble substrates. Furthermore, phthalic acid was converted to benzoate by decarboxylation, which entered into two different pathways: one is the protocatechuic acid pathway under the role of pca cluster, and the other is the catechol pathway. This study demonstrates a novel DBP degradation pathway, which broadens our understanding of the mechanisms of PAE biodegradation.


Assuntos
Micrococcaceae , Ácidos Ftálicos , Dibutilftalato/metabolismo , Ácidos Ftálicos/metabolismo , Biodegradação Ambiental , Micrococcaceae/metabolismo , Solo , Benzoatos
9.
Environ Sci Technol ; 57(50): 21224-21234, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38059467

RESUMO

Antibiotic resistance gene (ARG) transmission poses significant threats to human health. The effluent of wastewater treatment plants is demonstrated as a hotspot source of ARGs released into the environment. In this study, a synthetic microbiome containing nuclease-producing Deinococcus radiodurans was constructed to remove extracellular ARGs. Results of quantitative polymerase chain reaction (qPCR) showed significant reduction in plasmid RP4-associated ARGs (by more than 3 orders of magnitude) and reduction of indigenous ARG sul1 and mobile genetic element (MGE) intl1 (by more than 1 order of magnitude) in the synthetic microbiome compared to the control without D. radiodurans. Metagenomic analysis revealed a decrease in ARG and MGE diversity in extracellular DNA (eDNA) of the treated group. Notably, whereas eight antibiotic-resistant plasmids with mobility risk were detected in the control, only one was detected in the synthetic microbiome. The abundance of the nuclease encoding gene exeM, quantified by qPCR, indicated its enrichment in the synthetic microbiome, which ensures stable eDNA degradation even when D. radiodurans decreased. Moreover, intracellular ARGs and MGEs and pathogenic ARG hosts in the river receiving treated effluent were lower than those in the river receiving untreated effluent. Overall, this study presents a new approach for removing extracellular ARGs and further reducing the risk of ARG transmission in receiving rivers.


Assuntos
Antibacterianos , Microbiota , Humanos , Águas Residuárias , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética
10.
Toxins (Basel) ; 15(12)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133171

RESUMO

Aspergillus flavus can cause mildew in corn, peanuts, and other foods as well as animal feed, which seriously endangers human and livestock health; thus, preventing A. flavus contamination is imperative. Previous studies have found that the secondary metabolites of Bacillus subtilis BS-Z15 have broad-spectrum-inhibiting fungal activity, further confirming that the main active inhibiting fungal substance is Mycosubtilin (Myco). In this paper, corn and peanuts were treated with 0, 100, and 200 µg/mL BS-Z15 secondary metabolites (BS-Z15-SMA) for 7 days, and the aflatoxin contamination prevention effect was examined. The results showed that with increasing BS-Z15-SMA concentration, the aflatoxin contamination prevention effect was significantly enhanced. The above toxicity phenomena became more significant with extended BS-Z15-SMA treatment time. Scanning electron microscopy showed that 4 µg/mL Myco treatment resulted in a dented A. flavus surface and breakage of both the conidial stem and the mycelium. Transcriptome results showed that Myco significantly affected gene expression in A. flavus spores. The downregulated genes were significantly enriched in cell wall synthesis, transcription and translation, transmembrane transport pathways, and pathways related to key enzymes for aflatoxin synthesis. These results suggest that Myco could be used as a new bioactive material to prevent aflatoxin synthesis and contamination.


Assuntos
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/metabolismo , Bacillus subtilis/metabolismo , Aflatoxinas/análise , Transcriptoma , Grão Comestível/química , Arachis/microbiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-37906413

RESUMO

The lipopeptides produced by Bacillus subtilis have anti-cancer potential. We had previously identified a secondary metabolite of B. subtilis strain Z15 (BS-Z15), which has an operon that regulates lipopeptide synthesis, and also demonstrated that the fermentation products of this strain exerted antioxidant and pro-immune effects. The purpose of this study was to investigate in vitro and in vivo the anticancer effects of BS-Z15 secondary metabolites (BS-Z15 SMs) on hepatocellular carcinoma (HCC) cells. BS-Z15 SMs significantly inhibited H22 cell-derived murine xenograft tumor growth without any systemic toxicity. In addition, BS-Z15 SMs decreased the viability of H22 cells and BEL-7404 cells in vitro with respective IC50 values of 33.83 and 27.26 µg/mL. Consistent with this, BS-Z15 SMs induced apoptosis and G0/G1 phase arrest in the BEL-7404 cells, and the mitochondrial membrane potential was also significantly reduced in a dose-dependent manner. Mechanistically, BS-Z15 SMs upregulated the pro-apoptotic p53, Bax, cytochrome C, and cleaved-caspase-3/9 proteins and downregulated the anti-apoptotic Bcl-2. These findings suggest that the induction of apoptosis in HCC cells by BS-Z15 SMs may be related to the mitochondrial pathway. Thus, the secondary metabolites of B. subtilis strain Z15 are promising to become new anti-cancer drugs for the clinical treatment of liver cancer.

13.
Water Res ; 244: 120442, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549546

RESUMO

Microbial degradation to remove residual antibiotics in wastewater is of growing interest. However, biological treatment of antibiotics may cause resistance dissemination by mutations and horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). In this study, a Mn(Ⅱ)-oxidizing bacterium (MnOB), Pseudomonas aeruginosa MQ2, simultaneously degraded antibiotics, decreased HGT, and mitigated antibiotic resistance mutation. Intracellular Mn(II) levels increased during manganese oxidation, and biogenic manganese oxides (BioMnOx, including Mn(II), Mn(III) and Mn(IV)) tightly coated the cell surface. Mn(II) bio-oxidation mitigated antibiotic resistance acquisition from an E. coli ARG donor and mitigated antibiotic resistance inducement by decreasing conjugative transfer and mutation, respectively. BioMnOx also oxidized ciprofloxacin (1 mg/L) and tetracycline (5 mg/L), respectively removing 93% and 96% within 24 h. Transcriptomic analysis revealed that two new multicopper oxidase and one peroxidase genes are involved in Mn(II) oxidation. Downregulation of SOS response, multidrug resistance and type Ⅳ secretion system related genes explained that Mn(II) and BioMnOx decreased HGT and mitigated resistance mutation by alleviating oxidative stress, which makes recipient cells more vulnerable to ARG acquisition and mutation. A manganese bio-oxidation based reactor was constructed and completely removed tetracycline with environmental concentration within 4-hour hydraulic retention time. Overall, this study suggests that Mn (II) bio-oxidation process could be exploited to control antibiotic contamination and mitigate resistance propagation during water treatment.


Assuntos
Antibacterianos , Manganês , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Oxirredução , Óxidos/metabolismo , Compostos de Manganês/metabolismo , Tetraciclina
14.
Sci Total Environ ; 896: 165219, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37392873

RESUMO

Inorganic arsenic and organochlorines are frequently co-occurring contaminants in anoxic groundwater environments, and the bioremediation of their composite pollution has long been a rigorous predicament. Currently, the dechlorination behaviors and stress responses of microbial dechlorination consortia to arsenic are not yet fully understood. This study assessed the reductive dechlorination performance of a Dehalococcoides-bearing microcosm DH under gradient concentrations of arsenate [As(V)] or arsenite [As(III)] and investigated the response patterns of different functional microorganisms. Our results demonstrated that although the dechlorination rates declined with increasing arsenic concentrations in both As(III/V) scenarios, the inhibitory impact was more pronounced in As(III)-amended groups compared to As(V)-amended groups. Moreover, the vinyl chloride (VC)-to-ethene step was more susceptible to arsenic exposure compared to the trichloroethene (TCE)-to-dichloroethane (DCE) step, while high levels of arsenic exposure [e.g. As(III) > 75 µM] can induce significant accumulation of VC. Functional gene variations and microbial community analyses revealed that As(III/V) affected reductive dechlorination by directly inhibiting organohalide-respiring bacteria (OHRB) and indirectly inhibiting synergistic populations such as acetogens. Metagenomic results indicated that arsenic metabolic and efflux mechanisms were identical among different Dhc strains, and variations in arsenic uptake pathways were possibly responsible for their differential responses to arsenic exposures. By comparison, fermentative bacteria showed high potential for arsenic resistance due to their inherent advantages in arsenic detoxification and efflux mechanisms. Collectively, our findings expanded the understanding of the response patterns of different functional populations to arsenic stress in the dechlorinating consortium and provided insights into modifying bioremediation strategies at co-contaminated sites for furtherance.


Assuntos
Arsênio , Chloroflexi , Microbiota , Tricloroetileno , Cloreto de Vinil , Chloroflexi/metabolismo , Tricloroetileno/metabolismo , Arsênio/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
15.
Environ Res ; 235: 116645, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442263

RESUMO

Bioelectrochemical system is considered as a promising approach for enhanced bio-dechlorination. However, the mechanism of extracellular electron transfer in the dechlorinating consortium is still a controversial issue. In this study, bioelectrochemical systems were established with cathode potential settings at -0.30 V (vs. SHE) for trichloroethylene reduction. The average dechlorination rate (102.0 µM Cl·d-1) of biocathode was 1.36 times higher than that of open circuit (74.7 µM Cl·d-1). Electrochemical characterization via cyclic voltammetry illustrated that electrostimulation promoted electrochemical activity for redox reactions. Moreover, bacterial community structure analyses indicated electrical stimulation facilitated the enrichment of electroactive and dechlorinating populations on cathode. Metagenomic and quantitative polymerase chain reaction (qPCR) analyses revealed that direct electron transfer (via electrically conductive pili, multi-heme c-type cytochromes) between Axonexus and Desulfovibrio/cathode and indirect electron transfer (via riboflavin) for Dehalococcoides enhanced dechlorination process in BES. Overall, this study verifies the effectiveness of electrostimulated bio-dechlorination and provides novel insights into the mechanisms of dechlorination process enhancement in bioelectrochemical systems through electron transfer networks.


Assuntos
Elétrons , Tricloroetileno , Oxirredução , Eletricidade , Eletrodos , Tricloroetileno/química , Biodegradação Ambiental
16.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445765

RESUMO

Many plants have the capability to accumulate anthocyanins for coloration, and anthocyanins are advantageous to human health. In the case of hulless barley (Hordeum vulgare L. var. nudum), investigation into the mechanism of anthocyanin formation is limited to the level of protein-coding genes (PCGs). Here, we conducted a comprehensive bioinformatics analysis to identify a total of 9414 long noncoding RNAs (lncRNAs) in the seed coats of purple and white hulless barley along a developmental gradient. Transcriptome-wide profiles of lncRNAs documented several properties, including GC content fluctuation, uneven length, a diverse range of exon numbers, and a wide variety of transcript classifications. We found that certain lncRNAs in hulless barley possess detectable sequence conservation with Hordeum vulgare and other monocots. Furthermore, both differentially expressed lncRNAs (DElncRNAs) and PCGs (DEPCGs) were concentrated in the later seed development stages. On the one hand, DElncRNAs could potentially cis-regulate DEPCGs associated with multiple metabolic pathways, including flavonoid and anthocyanin biosynthesis in the late milk and soft dough stages. On the other hand, there was an opportunity for trans-regulated lncRNAs in the color-forming module to affect seed coat color by upregulating PCGs in the anthocyanin pathway. In addition, the interweaving of hulless barley lncRNAs and diverse TFs may function in seed coat coloration. Notably, we depicted a dynamic portrait of the anthocyanin synthesis pathway containing hulless barley lncRNAs. Therefore, this work provides valuable gene resources and more insights into the molecular mechanisms underlying anthocyanin accumulation in hulless barley from the perspective of lncRNAs, which facilitate the development of molecular design breeding in crops.


Assuntos
Hordeum , RNA Longo não Codificante , Antocianinas/genética , Antocianinas/metabolismo , Hordeum/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sementes/genética , Tibet , Transcriptoma
17.
Environ Sci Technol ; 57(29): 10733-10744, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37429742

RESUMO

Highly efficient sulfate reduction coupled to autotrophic denitrification plus nitrification is demonstrated by integrating an anaerobic membrane bioreactor (AnMBR) with a membrane aerated biofilm reactor (MABR). Concurrent chemical oxygen demand (COD) removal and sulfate reduction were accomplished in the AnMBR, while simultaneous nitrification and autotrophic denitrification were carried out in the MABR. Separate operation of the MABR achieved >90% total nitrogen (TN) removal when the N/S ratio was controlled at 0.4 gN/gS. The integrated AnMBR-MABR system efficiently resisted influent variability, realizing >95% COD removal in the AnMBR and >75% TN removal in the MABR when the influent COD/N ratio was above 4 gCOD/gN. Membrane fouling did not happen during ∼170 days of operation. Due to sulfide oxidation, a large amount of elemental sulfur (S0) accumulated in the MABR biofilm, where it served as an electron donor for denitrification. Microbial community analysis indicated that Nitrospira and Thiobacillus played key roles in nitrification and sulfide-driven denitrification, respectively, and that they occurred in different layers of the biofilm. This novel process offers advantages of a small land-area footprint, modular operation, and high efficiency electron-donor and oxygen utilizations, particularly for wastewater with a low COD/N ratio.


Assuntos
Nitrificação , Águas Residuárias , Desnitrificação , Nitrogênio , Biofilmes , Reatores Biológicos , Sulfatos
18.
J Transl Med ; 21(1): 429, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391847

RESUMO

BACKGROUND: The human gut microbiota (GM) is involved in the pathogenesis of hypertension (HTN), and could be affected by various factors, including sex and geography. However, available data directly linking GM to HTN based on sex differences are limited. METHODS: This study investigated the GM characteristics in HTN subjects in Northwestern China, and evaluate the associations of GM with blood pressure levels based on sex differences. A total of 87 HTN subjects and 45 controls were recruited with demographic and clinical characteristics documented. Fecal samples were collected for 16S rRNA gene sequencing and metagenomic sequencing. RESULTS: GM diversity was observed higher in females compared to males, and principal coordinate analysis showed an obvious segregation of females and males. Four predominant phyla of fecal GM included Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria. LEfSe analysis indicated that phylum unidentified_Bacteria was enriched in HTN females, while Leuconostocaceae, Weissella and Weissella_cibaria were enriched in control females (P < 0.05). Functionally, ROC analysis revealed that Cellular Processes (0.796, 95% CI 0.620 ~ 0.916), Human Diseases (0.773, 95% CI 0.595 ~ 0.900), Signal transduction (0.806, 95% CI 0.631 ~ 0.922) and Two-component system (0.806, 95% CI 0.631 ~ 0.922) could differentiate HTN females as effective functional classifiers, which were also positively correlated with systolic blood pressure levels. CONCLUSIONS: This work provides evidence of fecal GM characteristics in HTN females and males in a northwestern Chinese population, further supporting the notion that GM dysbiosis may participate in the pathogenesis of HTN, and the role of sex differences should be considered. Trial registration Chinese Clinical Trial Registry, ChiCTR1800019191. Registered 30 October 2018 - Retrospectively registered, http://www.chictr.org.cn/ .


Assuntos
Microbioma Gastrointestinal , Hipertensão , Feminino , Humanos , Masculino , Pressão Sanguínea , China , Estudos Transversais , RNA Ribossômico 16S/genética
19.
BMC Genomics ; 24(1): 273, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208602

RESUMO

BACKGROUND: Previous studies have shown that secondary metabolites of Bacillus subtilis strain Z15 (BS-Z15) are effective in treating fungal infections in mice. To evaluate whether it also modulates immune function in mice to exert antifungal effects, we investigated the effect of BS-Z15 secondary metabolites on both the innate and adaptive immune functions of mice, and explored its molecular mechanism through blood transcriptome analysis. RESULTS: The study showed that BS-Z15 secondary metabolites increased the number of monocytes and platelets in the blood, improved natural killer (NK) cell activity and phagocytosis of monocytes-macrophages, increased the conversion rate of lymphocytes in the spleen, the number of T lymphocytes and the antibody production capacity of mice, and increased the levels of Interferon gamma (IFN-γ), Interleukin-6 (IL-6), Immunoglobulin G (IgG) and Immunoglobulin M (IgM) in plasma. The blood transcriptome analysis revealed 608 differentially expressed genes following treatment with BS-Z15 secondary metabolites, all of which were significantly enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for immune-related entries and pathways such as Tumor Necrosis Factor (TNF) and Toll-like receptor (TLR) signaling pathways, and upregulated expression levels of immune-related genes such as Complement 1q B chain (C1qb), Complement 4B (C4b), Tetracyclin Resistant (TCR) and Regulatory Factor X, 5 (RFX5). CONCLUSIONS: BS-Z15 secondary metabolites were shown to enhance innate and adaptive immune function in mice, laying a theoretical foundation for its development and application in the field of immunity.


Assuntos
Bacillus subtilis , Células Matadoras Naturais , Animais , Camundongos , Células Matadoras Naturais/metabolismo , Linfócitos T/metabolismo , Interferon gama , Fagocitose
20.
World J Gastroenterol ; 29(16): 2452-2468, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37179585

RESUMO

Gastric cancer (GC) is defined as the primary epithelial malignancy derived from the stomach, and it is a complicated and heterogeneous disease with multiple risk factors. Despite its overall declining trend of incidence and mortality in various countries over the past few decades, GC remains the fifth most common malignancy and the fourth leading cause of cancer-related death globally. Although the global burden of GC has shown a significant downward trend, it remains severe in certain areas, such as Asia. GC ranks third in incidence and mortality among all cancer types in China, and it accounts for nearly 44.0% and 48.6% of new GC cases and GC-related deaths in the world, respectively. The regional differences in GC incidence and mortality are obvious, and annual new cases and deaths are increasing rapidly in some developing regions. Therefore, early preventive and screening strategies for GC are urgently needed. The clinical efficacies of conventional treatments for GC are limited, and the developing understanding of GC pathogenesis has increased the demand for new therapeutic regimens, including immune checkpoint inhibitors, cell immunotherapy and cancer vaccines. The present review describes the epidemiology of GC worldwide, especially in China, summarizes its risk and prognostic factors, and focuses on novel immunotherapies to develop therapeutic strategies for the management of GC patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/terapia , Neoplasias Gástricas/diagnóstico , Prognóstico , Fatores de Risco , Incidência , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...